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Abstract The detection of moving pedestrians is of major importance for intelligent vehi-
cles, since information about such persons and their tracks should be incorporated into
reliable collision avoidance algorithms. In this paper, we propose a new approach to detect
moving pedestrians aided by motion analysis. Our main contribution is to use motion infor-
mation in two ways: on the one hand we localize blobs of moving objects for regions of
interest (ROIs) selection by segmentation of an optical flow field in a pre-processing step,
so as to significantly reduce the number of detection windows needed to be evaluated by a
subsequent people classifier, resulting in a fast method suitable for real-time systems. On
the other hand we designed a novel kind of features called Motion Self Difference (MSD)
features as a complement to single image appearance features, e. g. Histograms of Oriented
Gradients (HOG), to improve distinctness and thus classifier performance. Furthermore, we
integrate our novel features in a two-layer classification scheme combining a HOG+Support
Vector Machines (SVM) and a MSD+SVM detector. Experimental results on the Daimler
mono moving pedestrian detection benchmark show that our approach obtains a log-average
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miss rate of 36 % in the FPPI range [10−2, 100], which is a clear improvement with respect
to the naive HOG+SVM approach and better than several other state-of-the-art detectors.
Moreover, our approach also reduces runtime per frame by an order of magnitude.

Keywords Pedestrian detection · Motion segmentation · Motion self difference features ·
Histograms of oriented gradients · Support vector machines

1 Introduction

Pedestrians are omnipresent but vulnerable participants in urban traffic environments.
Therefore, it is of importance for vehicles to locate them early from on-board video data and
to prevent collisions. From the perspective of active safety, moving pedestrians are more
endangered than those who just stand along the street; in addition, walking pedestrians are
more challenging to detect, since movements cause significant variations in appearance. An
early attempt concerned with this topic was done by Curio et al. [7], which was restricted to
detect pedestrians walking across the street. In this paper, we consider all moving pedestri-
ans, including those who walk across and also along the street. General pedestrian detection
techniques could be readily employed for moving pedestrian detection, but specialized
solutions as presented here enhance effectiveness and efficiency at the same time.

The approach we demonstrate utilizes motion information from an optical flow estima-
tion to improve results in two different ways: one is to select ROIs from a motion field
segmentation to avoid exhaustive search over the whole image; the second are novel motion
based features, motivated by the characteristic motion patterns exhibited by moving pedes-
trians against the background, as well as other moving objects, e. g. vehicles, bicycles and
so on.

Our previous findings about moving pedestrian detection was published in [36], while in
this article we provide several new enhancements and deeper insights into this challenge.
Most notably are the following four contributions:

Moving object localization from graph-based motion field segmentation in video
frames, motion is a very important cue to distinguish moving objects from background, as
moving objects usually generate different flow fields than a static background and static
objects, in terms of both magnitude and orientation. This assumption still holds in a moving
camera situation as from a driving vehicle. We observed that the motion field responds more
sensitively already to small scale ( ∼ 50 pixels in image height) and low contrast pedestri-
ans than single image cues ( e. g. gradients, colors). Such demanding scenes which show
only low response on pedestrians for still image appearance cues, nevertheless often exhibit
distinguishable optical flow vectors. An example is given in Fig. 1, where we obtained a
clearly separated blob from motion segmentation around the small scale and low contrast
pedestrians. We implemented an efficient graph-based segmentation algorithm on motion
fields as a pre-processing to localize moving objects, e. g. walking pedestrians and driving
vehicles.

Height-prior detection window generation from blob hypothesis an obvious disad-
vantage for sliding window detectors is that a huge amount of detection windows have to be
examined to detect people on various scales in a whole image. We successfully cope with
this challenge by applying our efficient algorithm for detection window proposals. These
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(a) Original frame (b) Motion segmentation results (c) Final detection results

Fig. 1 An example of using motion segmentation for ROIs selection when the pedestrian is of small scale
and low contrast. (a) The red bounding box indicates the ground truth annotation. (c) The yellow bounding
box denotes the final detection results, and the number above indicates the detection score output from our
classification method

examined windows are placed along the width direction of each segmented blob consider-
ing the blob height and fixed aspect ratio as given knowledge to determine appropriate sizes.
The motivation is that from our observation, a flow field of pedestrians always shows obvi-
ous boundaries along the upper and lower side of each person, while it sometimes presents
weak or even no boundaries on the left and right side of human bodies. One explanation
might be that pedestrians in images usually appear side-by-side instead of on-top of each
other. See Fig. 4 for an example.

Motion self difference features we designed new motion based features for moving
pedestrians. As exemplary shown in Fig. 5, one can notice that moving pedestrians exhibit
rather characteristic motion patterns versus static backgrounds and non-articulated moving
objects, e. g. driving cars, in terms of flow magnitudes. More specific, such objects exhibit
a flow magnitude map reflecting their fixed outer shapes, while moving pedestrians show
non-uniform structures due to inter-body motion. We make use of this property of walking
pedestrians to design motion self difference features, which compute the difference between
each neighboring pair of rectangular regions all over the human body w.r.t. optical flow
vectors.

Moving pedestrian annotations we added “moving” annotations to the Daimler mono
pedestrian detection benchmark. For each original pedestrian annotation, we differentiate
between moving or static by examination of several video frames before and after the current
frame. This was done manually by a single, expressly instructed person to avoid any bias
and inhomogeneity. This was extensive, but valuable work for further research in this area.
The ground truth data with moving/static annotations can be downloaded from http://www.
iai.uni-bonn.de/∼zhangs.

2 Related work

In recent years, the topic of pedestrian detection has attracted intensive attention in the
computer vision community [11, 13], but the currently best performing approaches are still
far from being reliable and real-time capable.

The arguably most prominent pedestrian detector is the HOG+SVM approach proposed
by Dalal et al. [8]. From then on, HOG was considered to be an efficient feature for people
detection, as it accurately describes the human-specific, steady head-shoulder and mutable
lower body appearance in a rich gradient set. Most later on developed detectors employ it

http://www.iai.uni-bonn.de/~zhangs
http://www.iai.uni-bonn.de/~zhangs
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at least as one basic feature, sometimes complemented with others [10, 31, 32, 35]. Apart
from that, shape features are also frequently considered a useful cue: Gavrila et al. [18]
introduced the Hausdorff distance transform and a template hierarchy to match image edges
to a set of shape templates in a fast way.

Compared to appearance based features, motion features for dynamic scenes have not
yet been intensively investigated in state-of-the-art detectors, due to some irregular influ-
ence from camera motion, which is difficult to remove. The Histogram of Optical Flow
(HOF) features [9] were proposed as HOG-like motion features, which were successful on
a per-window basis, but achieved only minimal benefit for full image detection in a recent
evaluation [11]. Afterwards, Walk et al. [31] proposed a number of modifications to HOF
features, which improve the performance modestly. More recently, Park et al. [28] computed
temporal differences as features, following a weak stabilization based on coarse optical
flow estimations through multiple frames. Besides, Bouchrika et al. [4] also tried to analyze
person walking patterns for improving the detection accuracy.

In terms of classifiers, SVM has been very frequently used in different approaches for
people detection. A linear kernel SVM [8] is computationally much faster than a latent
SVM [16], while the latter can satisfy requirements for part-based models. In order to
improve efficiency, Walk et al. [31] developed MPL-Boost, which is adaptive to learn
multiple pose classifiers in parallel.

Techniques for ROIs extraction are of remarkable importance, although they are not
widely discussed in previous work [19]. After determination of ROIs, unlikely regions such
as the uniform ground plane and sky [24] can be avoided to be scanned for people, result-
ing in a significant reduction of the number of candidate detection windows for a more
costly classifier to examine. Gualdi et al. [20] proposed a statistical based ROIs search
approach which used Monte Carlo sampling for estimating the likelihood density func-
tion with Gaussian kernels; Kamijo et al. [22] applied a spatio-temporal Markov Random
Field (MRF) model [23] for foreground objects extraction from background scenes; Some
researchers used symmetry and pedestrian size constraints to select ROIs [2, 3, 5]; Itti et
al. [21] employed a biologically inspired attentional algorithm that selects candidate regions
according to a saliency map built on color, intensity, and gradient orientation of pixels;
Elzein et al. [12] and Lim et al. [25] selected moving object regions based on temporal dif-
ferences computed between successive frames; Enzweiler et al. [14] used Bayes’ rule to
estimate the posterior for the presence of a pedestrian in a certain image region based on
motion parallax features. In some cases, when stereo images are provided, more informa-
tion can be exploited. For example, Franke et al. [17] proposed to merge stereo processing
and motion analysis to detect moving objects; Benenson et al. [1] estimated the stixel world
to restrict search regions.

3 Overview on our approach

A flow chart of our approach is shown in Fig. 2. The whole procedure can be divided into
four main parts:

Motion segmentation Graph-based motion segmentation is applied on the optical flow
field, which is computed from two down-sampled, consecutive input frames.

ROIs selection and detection window generation Interesting segments are considered
blobs of pedestrians. They are selected according to permissible sizes and positions from
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Fig. 2 The flow chart of our approach. See more details in Section 3

prior knowledge. For each one, a line of detection windows is defined using a height-prior
principle based on the blob’s height progression.

Feature computation HOG features and MSD features are extracted from each detection
window.

Classification We propose a two-layer classification scheme, adaptive to two different
kinds of features. First, we train a SVM with Radial Basis Function kernel (RBF-SVM) for
each kind of feature separately. Therefore, we get two primary scores for every detection
window from two individually trained classifiers. Next, a linear SVM trained on those two
primary scores decides about the merged confidence for each detection window, and the
final detection results are obtained by a non-maximum suppression (NMS) approach [16] to
suppress less confident windows nearby.

4 Graph-based motion segmentation for detection window generation

We apply motion segmentation as a pre-processing step to select ROIs, where moving
objects may appear. Since the magnitudes of optical flow vectors are related to the distance
between camera and subjects, also static persons are distinguishable from the background
when the camera itself moves, especially if the following distance ratio Rz is high:

Rz = distance(bg, cam)

distance(person, cam)
. (1)

Therefore, although we focus on moving pedestrian detection in this paper, we state that our
approach for ROIs selection can be extended for static pedestrian detection given an accurate
optical flow estimation. The more accurate optical flow is, the weaker such constraint on Rz.
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4.1 Graph-based motion segmentation

We use a robust optical flow estimation algorithm introduced by Liu [26], which produces
a layered flow field from two consecutive frames It and It+1. Because we consider optical
flow computation to be too time consuming for the full resolution frame, we resize the
input frames to 1/16 at first, preserving the original aspect ratio. Fortunately, we find the
image down-sampling causes little performance loss, while the overall consumed time is
significantly reduced.

We treat the optical flow field as a two-channel image, which is called flow image If (t)

in the following procedure, and its two channels fx and fy denote flow vector elements in
direction of the corresponding axis. Before segmentation, we first employ gentle Gaussian
smoothing (σ = 0.8) on the flow image in order to reduce noise while only slightly influ-
encing the region edges. After that, segmentation is processed following an efficient graph
based algorithm proposed by Felzenszwalb [15], which we ported to work on flow images.

First, we build a 4D feature space by mapping each pixel pi to a vector

�ν(i) = ( x(i), y(i), fx(i), fy(i) )T, (2)

where x(i) and y(i) are the coordinates of pi in If (t), and fx(i) respectively fy(i) are its
flow elements.

Second, we construct the graph G = (V ,E) by connecting each vertex (feature vector)
to its 8 nearest neighbors within this 4D-space. The weight w(vi, vj ) of an edge, formed by
vertices vi and vj , is the L2 (Euclidean) distance between the two corresponding points in
feature space.

Finally, we iterate on the set of edges to combine components according to weight
w(vi, vj ) until a segmentation S which satisfies

w(vi, vj ) > MInt(Ci, Cj ), vi, vj ∈ V, i �= j (3)

has been found. Here, Ci and Cj represent the components which vi and vj belong to, and
MInt is the minimum internal difference, defined as:

MInt(Ci, Cj ) = min( max
p,q∈Ci

w(p, q) + τ(Ci),

max
p,q∈Cj

w(p, q) + τ(Cj )).
(4)

The threshold function τ is used to control the degree of segmentation. The boundary
between two components is evidenced when the difference between them is greater than
their internal difference. τ controls the gap between intra- and inter-component differences.
In our method, we define the function τ as follows:

τ(C) = k

|C| , (5)

where, k is a constant number, and |C| is the number of pixels inside component C. This
means, for small components we require stronger evidence for boundary. Intuitively, a
bigger number of k produces larger segmented components.

4.2 Analysis of interesting blobs

Assuming we obtain n segments from the previous step, only a subset is selected as ROIs.
Interesting blobs are those probably containing moving pedestrians, chosen according to the
following weak constraints of the blobs’ sizes and positions: from our observation, those
blobs belonging to the background usually have a large extent and huge span from left to
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right, so one can reject them easily; those blobs smaller than the lower limit of pedestrian
size we want to detect(cf. Section 7.1) are considered as noises and should be discarded;
assuming pedestrians are standing on the ground, the lower boundary of each interesting
blob can not go above the vanishing point.

The i-th segment comprises a set of s(i) unique pixels

Si = {
(x1, y1), (x2, y2), ..., (xs(i), ys(i))

}
i
, (6)

that is inspected to fulfill the following conditions:

wmin ≤ max
a,b∈[1,s(i)]

{|xa − xb|}i ≤ wmax, (7)

hmin ≤ max
a,b∈[1,s(i)]

{|ya − yb|}i ≤ hmax, (8)

max
k∈[1,s(i)]

{yk}i ≥ ξyv, (9)

where yv indicates the vertical coordinate of the vanishing point, which can be computed
given camera parameters; ξ(ξ < 1) is the tolerance parameter.

Some number m of interesting blobs remain which satisfy the above requirements and
undergo further examinations for inside pedestrian detection.

4.3 Detection window generation

In this subsection, we describe how detection windows are created from interesting blobs as
the input of our classifier. We generate detection window coordinates from blobs in If (t),
but crop them from the original frame It , thus a coordinate transformation is necessary to
reverse down-sampling (cf. Section 4.1). In order to crop reasonable detection windows,
a novel height-prior algorithm as illustrated in Algorithm 1 is proposed to obtain window
coordinates from segmented blobs in motion frames. For each blob, we employ a sliding
window strategy to generate detection windows from left to right. At each x-coordinate, the
height of each detection window is adjusted to the upper and lower boundary of the blob at
current coordinate. In order to include some context information for feature computation, we
use a ratio of mb to grow the height value. After fixing the height of the detection window,
the width is calculated using a constant aspect ratio rwh to this height. This aspect ratio is a
fixed parameter predefined by the training examples when learning the classification model.
Figure 3 shows two examples of detection windows at different positions.
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Fig. 3 Generation of detection windows from a blob: two examples are drawn at different horizontal
positions

The reason for this height-prior rule is that from our observation, the optical flow around
human bodies usually exhibits more apparent edges in the head-to-sky and feet-to-ground
areas; in contrast, the flow field can easily form a horizontally connected region when a
group of people walking shoulder by shoulder as illustrated in Fig. 4.

We emphasize two details turned out to be important to obtain good performance in this
procedure: one is to keep the aspect ratio rwh of each detection window fixed to the same
as the classification model (64/128); the other is to add surrounding context with a fixed
proportion of mb applied to height of the detection window to include gradient information
between a person and background during training and classification. In our approach, we
choose mb to be 0.2.

(a) Multiple pedestrians (b) Segmented blobs

Fig. 4 An example of blobs each containing multiple people walking side by side. The green bounding
boxes in (a) indicate ground truth annotations
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5 Motion self difference features

Typical urban traffic environments consist of various objects, including buildings, vehi-
cles, pedestrians and so on. In this paper, we categorize all the above objects into: static
backgrounds, including all the static objects, e. g. buildings and static pedestrians etc.; and
moving objects, e. g. walking pedestrians, driving cars, etc.. After the motion segmenta-
tion procedure, blobs probably containing moving objects are selected, but inevitably some
static scene parts may also be included due to high Rz (cf. (1)), errors from the optical flow
estimation, or segmentation algorithm. Our task in the classification procedure is to distin-
guish moving pedestrians from all other objects, thus we observe the optical flow magnitude
maps of various objects to seek representative features for moving pedestrians.

We observed that moving pedestrians exhibit rather different flow patterns from static
backgrounds including static pedestrians and other moving objects, e. g. moving cars. The
major reason is that moving pedestrians generate non-consistent motions from different
body parts. See Fig. 5 for examples. More specific, from the flow magnitude maps of static
backgrounds and rigid moving objects, one can clearly see the constant silhouette of the
objects; in contrast, from the flow magnitude maps of moving pedestrians, only the silhou-
ette of the upper bodies stays constant, but there is a significant difference between two
legs, since only one leg at a time moves. We call this inter-body motion, caused by the
non-rigidity of human body. Based on the above observation, we propose MSD features
to describe the inter-body relative motion for moving pedestrians. The feature extraction
procedure is listed in Algorithm 2.

(a) Flow magnitudes of moving pedestrians.

(b) Flow magnitudes of static backgrounds including static pedestrians, and other moving objects,
e. g. moving cars.

Fig. 5 Several examples of flow magnitudes for various objects in a typical urban traffic environment. Each
blue bounding box contains a pair of the original image and its corresponding flow magnitude map
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First, we resize each detection window to the size of our pedestrian model: 64×128 pix-
els, and divide the resized window into s × s pixel square-sized regions, which we call cells
in the following. We denote the number of cells along the horizontal and vertical directions
as nch and ncv , respectively.

Second, we compute two histograms for each cell using trilinear interpolation [8] in
terms of fx and fy respectively. For the whole detection window, this yields two histogram
sets, denoted

Hx = {hx(i, j)|1 ≤ i ≤ nch, 1 ≤ j ≤ ncv}, (10)

and

Hy = {hy(i, j)|1 ≤ i ≤ nch, 1 ≤ j ≤ ncv}. (11)

Third, we compute the difference between histograms in Hx and Hy respectively. For
each cell, we consider all of its eight nearest neighboring cells and compute the difference
between the centering cell and each neighboring cell. The difference measure we utilize
is histogram intersection (HI). Given two histograms hp and hq each containing n bins,
histogram intersection is defined as

HI(hp, hq) =

n∑

k=1
min(hp(k), hq(k))

n∑

k=1
hp(k)

. (12)

However, if we iterate over all cells, redundancy will emerge since some cell pairs are
considered for twice. Therefore, we employ a tabu list to solve this problem. Those cell
pairs which have been considered once will be appended to the tabu list and a second visit
is thus prohibited.

Choosing the cell size of s to be 8 pixels for a 64×128 pixels detection window, we obtain
a 1072 dimensional feature vector. Notably, those cells along detection window borders do
not have eight neighboring cells.
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6 Two-layer classification

In this paper, we use two different kinds of features: HOG, which is appearance based;
MSD, which is motion based. Generally, there are two classification strategies to cope with
multiple features. One is to combine features, i. e. to concatenate all the features into a long
feature vector and train one classifier as a whole; another is to combine classifiers, i. e. to
train one classifier for each set of features individually, and then combine the outputs of
these classifiers to make a joint decision.

The first method is easy to implement, but it might suffer from the curse of dimension-
ality; the second method consists of a two-layer classification procedure, more adaptable to
high variation among different kinds of features, which may generate quite different bound-
aries during training. Therefore, we apply the two-layer classification scheme in this article
(cf. the illustration in Fig. 2).

In the first layer, same as in [8], we choose support vector machines as classifiers for both
HOG and MSD features but in two separate spaces. We use a RBF kernel instead of a linear
kernel, which has been widely used in similar applications. Apparently, a linear kernel is
most often chosen due to its efficiency but not quality of results. Since in our approach we
examine much less detection windows than previous methods did, the time consumed by a
SVM based on RBF kernel is still tolerable.

In the second classification layer, there are multiple possible ways to combine the deci-
sion scores from the first layer [6]. In this case, a linear kernel SVM suffices, since there
is an only two dimensional feature space consisting of the two decision scores from the
first layer classifiers. The trained linear kernel SVM outputs the final decision score for the
whole classification procedure.

Similar to [8], we also use the INRIA person dataset as training dataset for HOG features,
while we use the TUD-Brussel dataset [34] for MSD features since this dataset provides
motion pair annotations. A multi-round training strategy is used for both features, i. e. the
final model is produced by retraining using an augmented set (initial training data + hard
negative samples).

After receiving a final score from our classification procedure for each detection window,
the final detections in the current frame are determined by a pairwise non-max suppression
method [16], which discards the lesser-confident of every pair of detection windows that
overlap sufficiently according to (13).

7 Experiments

To our knowledge, none of the current public pedestrian datasets provide “moving” anno-
tations for pedestrians. Therefore, we have to choose one as our basis dataset and then
manually annotate moving pedestrians. In order to choose an appropriate dataset for exper-
iments, we have the following criteria: first, it should contain consecutive video frames for
optical flow computation; second, the size of the dataset should be big, with a large number
of annotated pedestrians; third, pedestrians of bigger size are preferable, because it makes
adding moving annotations easier.

Based on the above criteria, we took the Daimler mono pedestrian detection bench-
mark [13], which was captured by a monochrome camera installed on a vehicle driving
through urban environment, as our basis dataset. This dataset consists of 21,790 consecu-
tive frames (640 × 480), as well as 56,492 pedestrian annotations. The on-board camera
setting and large amount of pedestrian annotations meet our purpose of an extensive test
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for intelligent vehicle applications. Next, we manually determined each pedestrian annota-
tion to be moving or static, through observing multiple consecutive video frames before and
after the current time point. Then we added an additional label of “moving” to the ground
truth data, so as to record the movement status for each pedestrian annotation.

In this section, we explain our evaluation protocol, examine performance of our detector
under different configurations, and evaluate the performance of our approach in comparison
to several other methods using the same protocol. In addition, we discuss the runtimes of all
the detectors considered in this article in Section 7.4.

7.1 Evaluation protocol

In the following, we explain details of our evaluation protocol in four aspects, which are
consistent to the conventions in this field.

Ground truth regulation 1 (1) Ignored data selection: In our experiments, three cate-
gories of pedestrians are not considered: first, static pedestrians; second, pedestrians of less
than 50 pixels in image height, which corresponds to a real-world height of 1 meter at a
distance of 25 meters in this dataset; third, pedestrians that are heavily occluded (36-100 %
occlusion). All the above data is marked with an ignore label, which means they need not be
matched, however, matches are not considered as mistakes either. (2) Aspect ratio standard-
ization: because most of the detectors use windows with aspect ratio of 0.5, it is important
that the ground truth is annotated in the same way to obtain meaningful performances [11].
We standardize all ground truth bounding boxes by keeping the original height and center
while adjusting the width. From our observation, performances of different detectors stay
stable for various choices of rwh.

Detection results filtering Detection results are filtered out using an expanded filtering
method [11], so that detection results far outside the evaluation scale range should not be
considered. When evaluating a scale range of [S1, S2], only detections in [S1/ξ, S2ξ ] are
considered for evaluation. In our evaluation, we set ξ = 1.25.

Matching rules Filtered ground truth bounding boxes and detection results bounding
boxes are annotated by Bgt, and Bdt respectively. A detected bounding box and a ground
truth bounding box match if and only if the ratio of overlap to the union of their areas
exceeds a given threshold [13]:

match(Bdt, Bgt) = area(Bdt) ∩ area(Bgt)

area(Bdt) ∪ area(Bgt)

!
> 0.25 . (13)

Performance measurements We perform full image evaluation instead of per-window
evaluation as the former one provides a natural measure of error of an overall detection sys-
tem. In order to compare different detectors, we plot miss rate against false positives per
image (FPPI) curves in logarithmic scales by varying the threshold on the detection confi-
dence of the classifiers. We only plot the curves in FPPI range between (−∞, 100] as more
than 100 FPPI is anyway unacceptable for intelligent vehicle applications. In addition to
this miss rate vs. FPPI curves, we calculate a single, numerical measurement to summarize

1Regulated ground truth annotations can be downloaded at http://www.iai.uni-bonn.de/∼zhangs

http://www.iai.uni-bonn.de/~zhangs
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detector performance. We use the log-average miss rate [11], which is computed by averag-
ing the miss rates at nine FPPI rates evenly sampled in log-space in the range of [10−2, 100].
This log-average miss rate generally gives a more stable and informative assessment of the
overall performance for different detectors than the single miss rate at 10−1 FPPI, according
to [11].

7.2 Comparisons of our detectors under different configurations

To examine the improvements brought by motion segmentation and motion self difference
features, we define two detectors with different configurations: MoSeg+HOG, using motion
segmentation for ROIs selection and HOG features for classification; MoSeg+HOG+MSD,
using motion segmentation for ROIs selection and, both HOG and MSD features for classi-
fication. We compare the above two detectors with a solely HOG feature based detector to
observe the performance gains from both modifications.

From Fig. 6, we can see that supplementing motion segmentation for ROIs selection to
original HOG detector results in a significant decrease of miss rate by 12 % on average;
moreover, the integration of our novel, motion based MSD features yields an additional per-
formance improvement of 7 % w.r.t. the average miss rate, compared to the above detector
MoSeg+HOG. Therefore, our optimal detector is MoSeg+HOG+MSD, which results in an
overall improvement of 19 % w.r.t. the average miss rate of the original HOG detector.

7.3 Comparisons against state-of-the-art detectors

We also compare our proposed MoSeg+HOG+MSD detector against several state-of-the-
art detectors from a recent survey [11] in this field: original HOG [8] as the most similar
approach; VJ [30], Shapelet [29] and MultiFtr [33] as comparison for different features;

Fig. 6 Performance comparison of our detectors under different configurations on Daimler Monocular
Pedestrian Dataset
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Fig. 7 Performance comparison of state-of-the-art detectors on Daimler Monocular Pedestrian Dataset

HikSvm [27] and LatSvm [16] as comparison for different SVM kernels. Here, we do not
consider those detectors who use color information, as the dataset only contains gray scale
images. Moreover, we do not discuss those detectors whose runtimes are on minute-level
per frame (640×480 pixels) reported by [11], as they are far from real-time requirements for
intelligent vehicle applications. All the original detection results2 of the 6 selected detectors
plus our own detection results are evaluated using the same evaluation protocol explained
earlier in Section 7.1.

The miss rate vs. FPPI curves of above detectors are shown in Fig. 7, where the log-
average miss rate values are indicated in the left bottom rectangle within this figure.
Generally, our approach obtains a log-average miss rate of 36 %, lower than other state-of-
the-art detectors, and our miss rate is consistently lower in the FPPI range of [10−3, 10−1],
which is an useful range for intelligent vehicle applications (Fig. 8).

7.4 Runtime analysis

We perform our experiments on a modern computer with Intel Core-i5 CPU (2.4GHz), and
our source code is written in Matlab. Our runtime for one single frame is 1.93 seconds on
average obtained by evaluating the whole dataset of 21,790 frames.

As it would be infeasible work to re-implement every other detector and rerun them
on our computer, we instead normalize all the runtimes using the data in [11] to the rate
of a single machine. Here, we explain the normalization procedure in more detail. First,
we found there is one detector’s code publicly available, among the 15 detectors selected
in [11]. We downloaded it and ran it on our computer. After obtaining its runtime on our
computer, we compare it with its runtime reported by [11], thus we get a relative speed ratio

2http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
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Fig. 8 Some exemplary results from our approach in different scenarios. In each row, the original frame,
optical flow field, motion segmentation blobs and final detection results are shown from left to right

between our computer and the computer used in [11]. Then we use this ratio to normalize
all the runtimes of detectors to the rate of our computer. A similar method was used in [11].
From Table 1, we can find, among the other six state-of-the-art detectors, LatSvm [16] is the
fastest one with an average runtime of 10.86 seconds on a 640×480 frame, but our approach
is around 10 times faster. The total runtime of our detector is 1.93 seconds, consisting of
0.63 seconds for ROIs selection and 1.60 seconds for classification. Among all the detectors
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Table 1 Runtimes (in seconds) of different detectors by normalizing to the rate of a single machine

Detector ROIs selection Features Classifier Runtime

VJ [30] × Haar-like AdaBoost 11.97

Shapelet [29] × Gradients AdaBoost 106.43

HOG [8] × HOG linSVM 19.72

LatSvm [16] × HOG latent SVM 10.86

HikSvm [27] × HOG HIK-SVM 29.58

MultiFtr [33] × HOG+Haar AdaBoost 62.63

ours
√

HOG+MSD RBF-SVM+linSVM 1.93

listed in Table 1, our detector is the fastest and the only one who applies ROIs selection,
which demonstrates that ROIs selection is very important for enhancing efficiency.

7.5 Discussion

Based on the experimental results reported in Section 7.3, we want to highlight two aspects
of our comparisons in more detail: first, our modifications to the HOG approach result in a
significant decrease of miss rate by 19 % on average, which confirms our improvements are
successful; moreover, we outperform MultiFtr, which combines various kinds of appearance
features, such as Haar-like features, shapelets etc., thus an integration of temporal informa-
tion and spatial information seems to be more informative than spatial information alone,
and we managed to exploit it.

Another important aspect of evaluating a detector is the speed. The runtime for each
detector reported in Section 7.4 are evaluated for one single frame. For our detector, the
computational costs come from two parts: ROI selection and detection algorithm. For other
detectors, the costs only come from detection algorithm. Therefore, there is a trade-off
between additional ROI selection costs and reduced detection costs. From Table 1, we
can see that our detector is significantly faster than other detectors considered for com-
parison. This improvement indicates that our ROI selection method is an effective way to
reduce the runtime of the whole detector. More importantly, our detector ensures reasonable
performance while reducing the runtime.

8 Conclusion and future work

In this paper, we proposed a new approach utilizing motion information for moving pedes-
trian detection. A main contribution is to utilize motion information from optical flow
estimation for ROIs selection. This is accomplished by motion segmentation and blob selec-
tion. Furthermore, the motion field is used for novel motion features extraction through
computing self differences between two neighboring regions’ histograms of flow vectors.
These novel features have been shown to produce distinctive patterns for moving pedestri-
ans versus static backgrounds, static pedestrians, and other moving objects, thus increased
classification performance.

Our approach significantly reduced the number of examined detection windows by
explicit generation of suitable pedestrian hypotheses inside motion field blobs (ROIs),
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resulting in less false positives as well as lower runtime. Furthermore, a two-layer classifi-
cation scheme enhanced the detection confidence by combination of a HOG+SVM with a
MSD+SVM classifier using a linear SVM.

Experimental results on Daimler mono pedestrian detection benchmark showed that our
approach obtained a lower log-average miss rate than several state-of-the-art detectors. At
the same time, we improved the efficiency by an order of magnitude.

In the future, we will focus on motion pattern analysis for other moving objects e. g.
moving cars, so as to extend our approach to recognize various moving objects, enabling
a better understanding of the urban traffic environment for collision avoidance and other
tasks.
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